Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}+301258n-1205032=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-301258±\sqrt{301258^{2}-4\left(-1205032\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 301258 ni b va -1205032 ni c bilan almashtiring.
n=\frac{-301258±\sqrt{90756382564-4\left(-1205032\right)}}{2}
301258 kvadratini chiqarish.
n=\frac{-301258±\sqrt{90756382564+4820128}}{2}
-4 ni -1205032 marotabaga ko'paytirish.
n=\frac{-301258±\sqrt{90761202692}}{2}
90756382564 ni 4820128 ga qo'shish.
n=\frac{-301258±2\sqrt{22690300673}}{2}
90761202692 ning kvadrat ildizini chiqarish.
n=\frac{2\sqrt{22690300673}-301258}{2}
n=\frac{-301258±2\sqrt{22690300673}}{2} tenglamasini yeching, bunda ± musbat. -301258 ni 2\sqrt{22690300673} ga qo'shish.
n=\sqrt{22690300673}-150629
-301258+2\sqrt{22690300673} ni 2 ga bo'lish.
n=\frac{-2\sqrt{22690300673}-301258}{2}
n=\frac{-301258±2\sqrt{22690300673}}{2} tenglamasini yeching, bunda ± manfiy. -301258 dan 2\sqrt{22690300673} ni ayirish.
n=-\sqrt{22690300673}-150629
-301258-2\sqrt{22690300673} ni 2 ga bo'lish.
n=\sqrt{22690300673}-150629 n=-\sqrt{22690300673}-150629
Tenglama yechildi.
n^{2}+301258n-1205032=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
n^{2}+301258n-1205032-\left(-1205032\right)=-\left(-1205032\right)
1205032 ni tenglamaning ikkala tarafiga qo'shish.
n^{2}+301258n=-\left(-1205032\right)
O‘zidan -1205032 ayirilsa 0 qoladi.
n^{2}+301258n=1205032
0 dan -1205032 ni ayirish.
n^{2}+301258n+150629^{2}=1205032+150629^{2}
301258 ni bo‘lish, x shartining koeffitsienti, 2 ga 150629 olish uchun. Keyin, 150629 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+301258n+22689095641=1205032+22689095641
150629 kvadratini chiqarish.
n^{2}+301258n+22689095641=22690300673
1205032 ni 22689095641 ga qo'shish.
\left(n+150629\right)^{2}=22690300673
n^{2}+301258n+22689095641 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+150629\right)^{2}}=\sqrt{22690300673}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+150629=\sqrt{22690300673} n+150629=-\sqrt{22690300673}
Qisqartirish.
n=\sqrt{22690300673}-150629 n=-\sqrt{22690300673}-150629
Tenglamaning ikkala tarafidan 150629 ni ayirish.