Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}+3n-1339=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-3±\sqrt{3^{2}-4\left(-1339\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-3±\sqrt{9-4\left(-1339\right)}}{2}
3 kvadratini chiqarish.
n=\frac{-3±\sqrt{9+5356}}{2}
-4 ni -1339 marotabaga ko'paytirish.
n=\frac{-3±\sqrt{5365}}{2}
9 ni 5356 ga qo'shish.
n=\frac{\sqrt{5365}-3}{2}
n=\frac{-3±\sqrt{5365}}{2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{5365} ga qo'shish.
n=\frac{-\sqrt{5365}-3}{2}
n=\frac{-3±\sqrt{5365}}{2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{5365} ni ayirish.
n^{2}+3n-1339=\left(n-\frac{\sqrt{5365}-3}{2}\right)\left(n-\frac{-\sqrt{5365}-3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-3+\sqrt{5365}}{2} ga va x_{2} uchun \frac{-3-\sqrt{5365}}{2} ga bo‘ling.