Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

factor(n^{2}+6n+6)
6n ni olish uchun 3n va 3n ni birlashtirish.
n^{2}+6n+6=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-6±\sqrt{6^{2}-4\times 6}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-6±\sqrt{36-4\times 6}}{2}
6 kvadratini chiqarish.
n=\frac{-6±\sqrt{36-24}}{2}
-4 ni 6 marotabaga ko'paytirish.
n=\frac{-6±\sqrt{12}}{2}
36 ni -24 ga qo'shish.
n=\frac{-6±2\sqrt{3}}{2}
12 ning kvadrat ildizini chiqarish.
n=\frac{2\sqrt{3}-6}{2}
n=\frac{-6±2\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{3} ga qo'shish.
n=\sqrt{3}-3
-6+2\sqrt{3} ni 2 ga bo'lish.
n=\frac{-2\sqrt{3}-6}{2}
n=\frac{-6±2\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{3} ni ayirish.
n=-\sqrt{3}-3
-6-2\sqrt{3} ni 2 ga bo'lish.
n^{2}+6n+6=\left(n-\left(\sqrt{3}-3\right)\right)\left(n-\left(-\sqrt{3}-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -3+\sqrt{3} ga va x_{2} uchun -3-\sqrt{3} ga bo‘ling.
n^{2}+6n+6
6n ni olish uchun 3n va 3n ni birlashtirish.