Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}+2n-1=6
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n^{2}+2n-1-6=6-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
n^{2}+2n-1-6=0
O‘zidan 6 ayirilsa 0 qoladi.
n^{2}+2n-7=0
-1 dan 6 ni ayirish.
n=\frac{-2±\sqrt{2^{2}-4\left(-7\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -7 ni c bilan almashtiring.
n=\frac{-2±\sqrt{4-4\left(-7\right)}}{2}
2 kvadratini chiqarish.
n=\frac{-2±\sqrt{4+28}}{2}
-4 ni -7 marotabaga ko'paytirish.
n=\frac{-2±\sqrt{32}}{2}
4 ni 28 ga qo'shish.
n=\frac{-2±4\sqrt{2}}{2}
32 ning kvadrat ildizini chiqarish.
n=\frac{4\sqrt{2}-2}{2}
n=\frac{-2±4\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 4\sqrt{2} ga qo'shish.
n=2\sqrt{2}-1
4\sqrt{2}-2 ni 2 ga bo'lish.
n=\frac{-4\sqrt{2}-2}{2}
n=\frac{-2±4\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 4\sqrt{2} ni ayirish.
n=-2\sqrt{2}-1
-2-4\sqrt{2} ni 2 ga bo'lish.
n=2\sqrt{2}-1 n=-2\sqrt{2}-1
Tenglama yechildi.
n^{2}+2n-1=6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
n^{2}+2n-1-\left(-1\right)=6-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
n^{2}+2n=6-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
n^{2}+2n=7
6 dan -1 ni ayirish.
n^{2}+2n+1^{2}=7+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+2n+1=7+1
1 kvadratini chiqarish.
n^{2}+2n+1=8
7 ni 1 ga qo'shish.
\left(n+1\right)^{2}=8
n^{2}+2n+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+1\right)^{2}}=\sqrt{8}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+1=2\sqrt{2} n+1=-2\sqrt{2}
Qisqartirish.
n=2\sqrt{2}-1 n=-2\sqrt{2}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.