n uchun yechish
n=2\sqrt{2}-1\approx 1,828427125
n=-2\sqrt{2}-1\approx -3,828427125
Baham ko'rish
Klipbordga nusxa olish
n^{2}+2n-1=6
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n^{2}+2n-1-6=6-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
n^{2}+2n-1-6=0
O‘zidan 6 ayirilsa 0 qoladi.
n^{2}+2n-7=0
-1 dan 6 ni ayirish.
n=\frac{-2±\sqrt{2^{2}-4\left(-7\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -7 ni c bilan almashtiring.
n=\frac{-2±\sqrt{4-4\left(-7\right)}}{2}
2 kvadratini chiqarish.
n=\frac{-2±\sqrt{4+28}}{2}
-4 ni -7 marotabaga ko'paytirish.
n=\frac{-2±\sqrt{32}}{2}
4 ni 28 ga qo'shish.
n=\frac{-2±4\sqrt{2}}{2}
32 ning kvadrat ildizini chiqarish.
n=\frac{4\sqrt{2}-2}{2}
n=\frac{-2±4\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 4\sqrt{2} ga qo'shish.
n=2\sqrt{2}-1
4\sqrt{2}-2 ni 2 ga bo'lish.
n=\frac{-4\sqrt{2}-2}{2}
n=\frac{-2±4\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 4\sqrt{2} ni ayirish.
n=-2\sqrt{2}-1
-2-4\sqrt{2} ni 2 ga bo'lish.
n=2\sqrt{2}-1 n=-2\sqrt{2}-1
Tenglama yechildi.
n^{2}+2n-1=6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
n^{2}+2n-1-\left(-1\right)=6-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
n^{2}+2n=6-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
n^{2}+2n=7
6 dan -1 ni ayirish.
n^{2}+2n+1^{2}=7+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+2n+1=7+1
1 kvadratini chiqarish.
n^{2}+2n+1=8
7 ni 1 ga qo'shish.
\left(n+1\right)^{2}=8
n^{2}+2n+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+1\right)^{2}}=\sqrt{8}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+1=2\sqrt{2} n+1=-2\sqrt{2}
Qisqartirish.
n=2\sqrt{2}-1 n=-2\sqrt{2}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}