Omil
-61\left(m-\frac{-\sqrt{1855}-5}{61}\right)\left(m-\frac{\sqrt{1855}-5}{61}\right)
Baholash
30-10m-61m^{2}
Baham ko'rish
Klipbordga nusxa olish
factor(-10m-61m^{2}+30)
-10m ni olish uchun m va -11m ni birlashtirish.
-61m^{2}-10m+30=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
m=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-61\right)\times 30}}{2\left(-61\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-\left(-10\right)±\sqrt{100-4\left(-61\right)\times 30}}{2\left(-61\right)}
-10 kvadratini chiqarish.
m=\frac{-\left(-10\right)±\sqrt{100+244\times 30}}{2\left(-61\right)}
-4 ni -61 marotabaga ko'paytirish.
m=\frac{-\left(-10\right)±\sqrt{100+7320}}{2\left(-61\right)}
244 ni 30 marotabaga ko'paytirish.
m=\frac{-\left(-10\right)±\sqrt{7420}}{2\left(-61\right)}
100 ni 7320 ga qo'shish.
m=\frac{-\left(-10\right)±2\sqrt{1855}}{2\left(-61\right)}
7420 ning kvadrat ildizini chiqarish.
m=\frac{10±2\sqrt{1855}}{2\left(-61\right)}
-10 ning teskarisi 10 ga teng.
m=\frac{10±2\sqrt{1855}}{-122}
2 ni -61 marotabaga ko'paytirish.
m=\frac{2\sqrt{1855}+10}{-122}
m=\frac{10±2\sqrt{1855}}{-122} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{1855} ga qo'shish.
m=\frac{-\sqrt{1855}-5}{61}
10+2\sqrt{1855} ni -122 ga bo'lish.
m=\frac{10-2\sqrt{1855}}{-122}
m=\frac{10±2\sqrt{1855}}{-122} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{1855} ni ayirish.
m=\frac{\sqrt{1855}-5}{61}
10-2\sqrt{1855} ni -122 ga bo'lish.
-61m^{2}-10m+30=-61\left(m-\frac{-\sqrt{1855}-5}{61}\right)\left(m-\frac{\sqrt{1855}-5}{61}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-5-\sqrt{1855}}{61} ga va x_{2} uchun \frac{-5+\sqrt{1855}}{61} ga bo‘ling.
-10m-61m^{2}+30
-10m ni olish uchun m va -11m ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}