Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

m^{2}-6m-25=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-25\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -25 ni c bilan almashtiring.
m=\frac{-\left(-6\right)±\sqrt{36-4\left(-25\right)}}{2}
-6 kvadratini chiqarish.
m=\frac{-\left(-6\right)±\sqrt{36+100}}{2}
-4 ni -25 marotabaga ko'paytirish.
m=\frac{-\left(-6\right)±\sqrt{136}}{2}
36 ni 100 ga qo'shish.
m=\frac{-\left(-6\right)±2\sqrt{34}}{2}
136 ning kvadrat ildizini chiqarish.
m=\frac{6±2\sqrt{34}}{2}
-6 ning teskarisi 6 ga teng.
m=\frac{2\sqrt{34}+6}{2}
m=\frac{6±2\sqrt{34}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{34} ga qo'shish.
m=\sqrt{34}+3
6+2\sqrt{34} ni 2 ga bo'lish.
m=\frac{6-2\sqrt{34}}{2}
m=\frac{6±2\sqrt{34}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{34} ni ayirish.
m=3-\sqrt{34}
6-2\sqrt{34} ni 2 ga bo'lish.
m=\sqrt{34}+3 m=3-\sqrt{34}
Tenglama yechildi.
m^{2}-6m-25=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
m^{2}-6m-25-\left(-25\right)=-\left(-25\right)
25 ni tenglamaning ikkala tarafiga qo'shish.
m^{2}-6m=-\left(-25\right)
O‘zidan -25 ayirilsa 0 qoladi.
m^{2}-6m=25
0 dan -25 ni ayirish.
m^{2}-6m+\left(-3\right)^{2}=25+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-6m+9=25+9
-3 kvadratini chiqarish.
m^{2}-6m+9=34
25 ni 9 ga qo'shish.
\left(m-3\right)^{2}=34
m^{2}-6m+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-3\right)^{2}}=\sqrt{34}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-3=\sqrt{34} m-3=-\sqrt{34}
Qisqartirish.
m=\sqrt{34}+3 m=3-\sqrt{34}
3 ni tenglamaning ikkala tarafiga qo'shish.