m uchun yechish
m=\frac{3\sqrt{2}}{2}+1\approx 3,121320344
m=-\frac{3\sqrt{2}}{2}+1\approx -1,121320344
Baham ko'rish
Klipbordga nusxa olish
m^{2}-2m-3=\frac{1}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m^{2}-2m-3-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
m^{2}-2m-3-\frac{1}{2}=0
O‘zidan \frac{1}{2} ayirilsa 0 qoladi.
m^{2}-2m-\frac{7}{2}=0
-3 dan \frac{1}{2} ni ayirish.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-\frac{7}{2}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -\frac{7}{2} ni c bilan almashtiring.
m=\frac{-\left(-2\right)±\sqrt{4-4\left(-\frac{7}{2}\right)}}{2}
-2 kvadratini chiqarish.
m=\frac{-\left(-2\right)±\sqrt{4+14}}{2}
-4 ni -\frac{7}{2} marotabaga ko'paytirish.
m=\frac{-\left(-2\right)±\sqrt{18}}{2}
4 ni 14 ga qo'shish.
m=\frac{-\left(-2\right)±3\sqrt{2}}{2}
18 ning kvadrat ildizini chiqarish.
m=\frac{2±3\sqrt{2}}{2}
-2 ning teskarisi 2 ga teng.
m=\frac{3\sqrt{2}+2}{2}
m=\frac{2±3\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 3\sqrt{2} ga qo'shish.
m=\frac{3\sqrt{2}}{2}+1
2+3\sqrt{2} ni 2 ga bo'lish.
m=\frac{2-3\sqrt{2}}{2}
m=\frac{2±3\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 3\sqrt{2} ni ayirish.
m=-\frac{3\sqrt{2}}{2}+1
2-3\sqrt{2} ni 2 ga bo'lish.
m=\frac{3\sqrt{2}}{2}+1 m=-\frac{3\sqrt{2}}{2}+1
Tenglama yechildi.
m^{2}-2m-3=\frac{1}{2}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
m^{2}-2m-3-\left(-3\right)=\frac{1}{2}-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
m^{2}-2m=\frac{1}{2}-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
m^{2}-2m=\frac{7}{2}
\frac{1}{2} dan -3 ni ayirish.
m^{2}-2m+1=\frac{7}{2}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-2m+1=\frac{9}{2}
\frac{7}{2} ni 1 ga qo'shish.
\left(m-1\right)^{2}=\frac{9}{2}
m^{2}-2m+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-1\right)^{2}}=\sqrt{\frac{9}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-1=\frac{3\sqrt{2}}{2} m-1=-\frac{3\sqrt{2}}{2}
Qisqartirish.
m=\frac{3\sqrt{2}}{2}+1 m=-\frac{3\sqrt{2}}{2}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}