Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(m-11\right)\left(m+11\right)=0
Hisoblang: m^{2}-121. m^{2}-121 ni m^{2}-11^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=11 m=-11
Tenglamani yechish uchun m-11=0 va m+11=0 ni yeching.
m^{2}=121
121 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
m=11 m=-11
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m^{2}-121=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-121\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -121 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\left(-121\right)}}{2}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{484}}{2}
-4 ni -121 marotabaga ko'paytirish.
m=\frac{0±22}{2}
484 ning kvadrat ildizini chiqarish.
m=11
m=\frac{0±22}{2} tenglamasini yeching, bunda ± musbat. 22 ni 2 ga bo'lish.
m=-11
m=\frac{0±22}{2} tenglamasini yeching, bunda ± manfiy. -22 ni 2 ga bo'lish.
m=11 m=-11
Tenglama yechildi.