m uchun yechish
m=11
m=-11
Baham ko'rish
Klipbordga nusxa olish
\left(m-11\right)\left(m+11\right)=0
Hisoblang: m^{2}-121. m^{2}-121 ni m^{2}-11^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=11 m=-11
Tenglamani yechish uchun m-11=0 va m+11=0 ni yeching.
m^{2}=121
121 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
m=11 m=-11
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m^{2}-121=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-121\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -121 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\left(-121\right)}}{2}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{484}}{2}
-4 ni -121 marotabaga ko'paytirish.
m=\frac{0±22}{2}
484 ning kvadrat ildizini chiqarish.
m=11
m=\frac{0±22}{2} tenglamasini yeching, bunda ± musbat. 22 ni 2 ga bo'lish.
m=-11
m=\frac{0±22}{2} tenglamasini yeching, bunda ± manfiy. -22 ni 2 ga bo'lish.
m=11 m=-11
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}