Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

m^{2}-12m+10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
m=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 10}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-\left(-12\right)±\sqrt{144-4\times 10}}{2}
-12 kvadratini chiqarish.
m=\frac{-\left(-12\right)±\sqrt{144-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
m=\frac{-\left(-12\right)±\sqrt{104}}{2}
144 ni -40 ga qo'shish.
m=\frac{-\left(-12\right)±2\sqrt{26}}{2}
104 ning kvadrat ildizini chiqarish.
m=\frac{12±2\sqrt{26}}{2}
-12 ning teskarisi 12 ga teng.
m=\frac{2\sqrt{26}+12}{2}
m=\frac{12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± musbat. 12 ni 2\sqrt{26} ga qo'shish.
m=\sqrt{26}+6
12+2\sqrt{26} ni 2 ga bo'lish.
m=\frac{12-2\sqrt{26}}{2}
m=\frac{12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 2\sqrt{26} ni ayirish.
m=6-\sqrt{26}
12-2\sqrt{26} ni 2 ga bo'lish.
m^{2}-12m+10=\left(m-\left(\sqrt{26}+6\right)\right)\left(m-\left(6-\sqrt{26}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 6+\sqrt{26} ga va x_{2} uchun 6-\sqrt{26} ga bo‘ling.