Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

m^{2}-m=0
Ikkala tarafdan m ni ayirish.
m\left(m-1\right)=0
m omili.
m=0 m=1
Tenglamani yechish uchun m=0 va m-1=0 ni yeching.
m^{2}-m=0
Ikkala tarafdan m ni ayirish.
m=\frac{-\left(-1\right)±\sqrt{1}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 0 ni c bilan almashtiring.
m=\frac{-\left(-1\right)±1}{2}
1 ning kvadrat ildizini chiqarish.
m=\frac{1±1}{2}
-1 ning teskarisi 1 ga teng.
m=\frac{2}{2}
m=\frac{1±1}{2} tenglamasini yeching, bunda ± musbat. 1 ni 1 ga qo'shish.
m=1
2 ni 2 ga bo'lish.
m=\frac{0}{2}
m=\frac{1±1}{2} tenglamasini yeching, bunda ± manfiy. 1 dan 1 ni ayirish.
m=0
0 ni 2 ga bo'lish.
m=1 m=0
Tenglama yechildi.
m^{2}-m=0
Ikkala tarafdan m ni ayirish.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-m+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\left(m-\frac{1}{2}\right)^{2}=\frac{1}{4}
m^{2}-m+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-\frac{1}{2}=\frac{1}{2} m-\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
m=1 m=0
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.