m uchun yechish
m = \frac{\sqrt{41} - 3}{2} \approx 1,701562119
m=\frac{-\sqrt{41}-3}{2}\approx -4,701562119
Baham ko'rish
Klipbordga nusxa olish
2m^{2}+6m+13+16=45
2m^{2} ni olish uchun m^{2} va m^{2} ni birlashtirish.
2m^{2}+6m+29=45
29 olish uchun 13 va 16'ni qo'shing.
2m^{2}+6m+29-45=0
Ikkala tarafdan 45 ni ayirish.
2m^{2}+6m-16=0
-16 olish uchun 29 dan 45 ni ayirish.
m=\frac{-6±\sqrt{6^{2}-4\times 2\left(-16\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 6 ni b va -16 ni c bilan almashtiring.
m=\frac{-6±\sqrt{36-4\times 2\left(-16\right)}}{2\times 2}
6 kvadratini chiqarish.
m=\frac{-6±\sqrt{36-8\left(-16\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
m=\frac{-6±\sqrt{36+128}}{2\times 2}
-8 ni -16 marotabaga ko'paytirish.
m=\frac{-6±\sqrt{164}}{2\times 2}
36 ni 128 ga qo'shish.
m=\frac{-6±2\sqrt{41}}{2\times 2}
164 ning kvadrat ildizini chiqarish.
m=\frac{-6±2\sqrt{41}}{4}
2 ni 2 marotabaga ko'paytirish.
m=\frac{2\sqrt{41}-6}{4}
m=\frac{-6±2\sqrt{41}}{4} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{41} ga qo'shish.
m=\frac{\sqrt{41}-3}{2}
-6+2\sqrt{41} ni 4 ga bo'lish.
m=\frac{-2\sqrt{41}-6}{4}
m=\frac{-6±2\sqrt{41}}{4} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{41} ni ayirish.
m=\frac{-\sqrt{41}-3}{2}
-6-2\sqrt{41} ni 4 ga bo'lish.
m=\frac{\sqrt{41}-3}{2} m=\frac{-\sqrt{41}-3}{2}
Tenglama yechildi.
2m^{2}+6m+13+16=45
2m^{2} ni olish uchun m^{2} va m^{2} ni birlashtirish.
2m^{2}+6m+29=45
29 olish uchun 13 va 16'ni qo'shing.
2m^{2}+6m=45-29
Ikkala tarafdan 29 ni ayirish.
2m^{2}+6m=16
16 olish uchun 45 dan 29 ni ayirish.
\frac{2m^{2}+6m}{2}=\frac{16}{2}
Ikki tarafini 2 ga bo‘ling.
m^{2}+\frac{6}{2}m=\frac{16}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
m^{2}+3m=\frac{16}{2}
6 ni 2 ga bo'lish.
m^{2}+3m=8
16 ni 2 ga bo'lish.
m^{2}+3m+\left(\frac{3}{2}\right)^{2}=8+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}+3m+\frac{9}{4}=8+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
m^{2}+3m+\frac{9}{4}=\frac{41}{4}
8 ni \frac{9}{4} ga qo'shish.
\left(m+\frac{3}{2}\right)^{2}=\frac{41}{4}
m^{2}+3m+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m+\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m+\frac{3}{2}=\frac{\sqrt{41}}{2} m+\frac{3}{2}=-\frac{\sqrt{41}}{2}
Qisqartirish.
m=\frac{\sqrt{41}-3}{2} m=\frac{-\sqrt{41}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}