m uchun yechish
m=2\sqrt{46}-13\approx 0,564659966
m=-2\sqrt{46}-13\approx -26,564659966
Baham ko'rish
Klipbordga nusxa olish
m^{2}+26m-15=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-26±\sqrt{26^{2}-4\left(-15\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 26 ni b va -15 ni c bilan almashtiring.
m=\frac{-26±\sqrt{676-4\left(-15\right)}}{2}
26 kvadratini chiqarish.
m=\frac{-26±\sqrt{676+60}}{2}
-4 ni -15 marotabaga ko'paytirish.
m=\frac{-26±\sqrt{736}}{2}
676 ni 60 ga qo'shish.
m=\frac{-26±4\sqrt{46}}{2}
736 ning kvadrat ildizini chiqarish.
m=\frac{4\sqrt{46}-26}{2}
m=\frac{-26±4\sqrt{46}}{2} tenglamasini yeching, bunda ± musbat. -26 ni 4\sqrt{46} ga qo'shish.
m=2\sqrt{46}-13
-26+4\sqrt{46} ni 2 ga bo'lish.
m=\frac{-4\sqrt{46}-26}{2}
m=\frac{-26±4\sqrt{46}}{2} tenglamasini yeching, bunda ± manfiy. -26 dan 4\sqrt{46} ni ayirish.
m=-2\sqrt{46}-13
-26-4\sqrt{46} ni 2 ga bo'lish.
m=2\sqrt{46}-13 m=-2\sqrt{46}-13
Tenglama yechildi.
m^{2}+26m-15=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
m^{2}+26m-15-\left(-15\right)=-\left(-15\right)
15 ni tenglamaning ikkala tarafiga qo'shish.
m^{2}+26m=-\left(-15\right)
O‘zidan -15 ayirilsa 0 qoladi.
m^{2}+26m=15
0 dan -15 ni ayirish.
m^{2}+26m+13^{2}=15+13^{2}
26 ni bo‘lish, x shartining koeffitsienti, 2 ga 13 olish uchun. Keyin, 13 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}+26m+169=15+169
13 kvadratini chiqarish.
m^{2}+26m+169=184
15 ni 169 ga qo'shish.
\left(m+13\right)^{2}=184
m^{2}+26m+169 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m+13\right)^{2}}=\sqrt{184}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m+13=2\sqrt{46} m+13=-2\sqrt{46}
Qisqartirish.
m=2\sqrt{46}-13 m=-2\sqrt{46}-13
Tenglamaning ikkala tarafidan 13 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}