T uchun yechish
\left\{\begin{matrix}T=\frac{m\Omega \sigma }{k_{B}}\text{, }&k_{B}\neq 0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\\T\in \mathrm{R}\text{, }&m=0\text{ and }k_{B}=0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\end{matrix}\right,
k_B uchun yechish
\left\{\begin{matrix}k_{B}=\frac{m\Omega \sigma }{T}\text{, }&T\neq 0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\\k_{B}\in \mathrm{R}\text{, }&m=0\text{ and }T=0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
m\Omega \sigma =k_{B}T
Tenglamaning ikkala tarafini \Omega \sigma ga ko'paytirish.
k_{B}T=m\Omega \sigma
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{k_{B}T}{k_{B}}=\frac{m\Omega \sigma }{k_{B}}
Ikki tarafini k_{B} ga bo‘ling.
T=\frac{m\Omega \sigma }{k_{B}}
k_{B} ga bo'lish k_{B} ga ko'paytirishni bekor qiladi.
m\Omega \sigma =k_{B}T
Tenglamaning ikkala tarafini \Omega \sigma ga ko'paytirish.
k_{B}T=m\Omega \sigma
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
Tk_{B}=m\Omega \sigma
Tenglama standart shaklda.
\frac{Tk_{B}}{T}=\frac{m\Omega \sigma }{T}
Ikki tarafini T ga bo‘ling.
k_{B}=\frac{m\Omega \sigma }{T}
T ga bo'lish T ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}