n uchun yechish
n=-\frac{m\left(12m-1\right)}{60m+1}
m\neq -\frac{1}{60}\text{ and }m\neq 0
m uchun yechish (complex solution)
\left\{\begin{matrix}\\m=\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&\text{unconditionally}\\m=-\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&n\neq 0\end{matrix}\right,
m uchun yechish
\left\{\begin{matrix}m=-\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&n\geq \frac{\sqrt{6}}{150}+\frac{7}{300}\text{ or }\left(n\neq 0\text{ and }n\leq -\frac{\sqrt{6}}{150}+\frac{7}{300}\right)\\m=\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&n\geq \frac{\sqrt{6}}{150}+\frac{7}{300}\text{ or }n\leq -\frac{\sqrt{6}}{150}+\frac{7}{300}\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
12mm+5n\times 12m=m-n
Tenglamaning ikkala tarafini 12m ga ko'paytirish.
12m^{2}+5n\times 12m=m-n
m^{2} hosil qilish uchun m va m ni ko'paytirish.
12m^{2}+60nm=m-n
60 hosil qilish uchun 5 va 12 ni ko'paytirish.
12m^{2}+60nm+n=m
n ni ikki tarafga qo’shing.
60nm+n=m-12m^{2}
Ikkala tarafdan 12m^{2} ni ayirish.
\left(60m+1\right)n=m-12m^{2}
n'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(60m+1\right)n}{60m+1}=\frac{m\left(1-12m\right)}{60m+1}
Ikki tarafini 60m+1 ga bo‘ling.
n=\frac{m\left(1-12m\right)}{60m+1}
60m+1 ga bo'lish 60m+1 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}