Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

m+2-m^{2}=2m-3
Ikkala tarafdan m^{2} ni ayirish.
m+2-m^{2}-2m=-3
Ikkala tarafdan 2m ni ayirish.
-m+2-m^{2}=-3
-m ni olish uchun m va -2m ni birlashtirish.
-m+2-m^{2}+3=0
3 ni ikki tarafga qo’shing.
-m+5-m^{2}=0
5 olish uchun 2 va 3'ni qo'shing.
-m^{2}-m+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 5}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -1 ni b va 5 ni c bilan almashtiring.
m=\frac{-\left(-1\right)±\sqrt{1+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
m=\frac{-\left(-1\right)±\sqrt{1+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
m=\frac{-\left(-1\right)±\sqrt{21}}{2\left(-1\right)}
1 ni 20 ga qo'shish.
m=\frac{1±\sqrt{21}}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
m=\frac{1±\sqrt{21}}{-2}
2 ni -1 marotabaga ko'paytirish.
m=\frac{\sqrt{21}+1}{-2}
m=\frac{1±\sqrt{21}}{-2} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{21} ga qo'shish.
m=\frac{-\sqrt{21}-1}{2}
1+\sqrt{21} ni -2 ga bo'lish.
m=\frac{1-\sqrt{21}}{-2}
m=\frac{1±\sqrt{21}}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{21} ni ayirish.
m=\frac{\sqrt{21}-1}{2}
1-\sqrt{21} ni -2 ga bo'lish.
m=\frac{-\sqrt{21}-1}{2} m=\frac{\sqrt{21}-1}{2}
Tenglama yechildi.
m+2-m^{2}=2m-3
Ikkala tarafdan m^{2} ni ayirish.
m+2-m^{2}-2m=-3
Ikkala tarafdan 2m ni ayirish.
-m+2-m^{2}=-3
-m ni olish uchun m va -2m ni birlashtirish.
-m-m^{2}=-3-2
Ikkala tarafdan 2 ni ayirish.
-m-m^{2}=-5
-5 olish uchun -3 dan 2 ni ayirish.
-m^{2}-m=-5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-m^{2}-m}{-1}=-\frac{5}{-1}
Ikki tarafini -1 ga bo‘ling.
m^{2}+\left(-\frac{1}{-1}\right)m=-\frac{5}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
m^{2}+m=-\frac{5}{-1}
-1 ni -1 ga bo'lish.
m^{2}+m=5
-5 ni -1 ga bo'lish.
m^{2}+m+\left(\frac{1}{2}\right)^{2}=5+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}+m+\frac{1}{4}=5+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
m^{2}+m+\frac{1}{4}=\frac{21}{4}
5 ni \frac{1}{4} ga qo'shish.
\left(m+\frac{1}{2}\right)^{2}=\frac{21}{4}
m^{2}+m+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m+\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m+\frac{1}{2}=\frac{\sqrt{21}}{2} m+\frac{1}{2}=-\frac{\sqrt{21}}{2}
Qisqartirish.
m=\frac{\sqrt{21}-1}{2} m=\frac{-\sqrt{21}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.