k uchun yechish
\left\{\begin{matrix}k=-\frac{\left(-2-i\right)m^{2}+\left(3+3i\right)m+\left(2-2i\right)}{z}\text{, }&z\neq 0\\k\in \mathrm{C}\text{, }&\left(m=2\text{ or }m=-\frac{1}{5}+\frac{3}{5}i\right)\text{ and }z=0\end{matrix}\right,
m uchun yechish
m=\left(\frac{1}{5}-\frac{1}{10}i\right)\sqrt{\left(8+4i\right)kz+\left(24+10i\right)}+\left(\frac{9}{10}+\frac{3}{10}i\right)
m=\left(-\frac{1}{5}+\frac{1}{10}i\right)\sqrt{\left(8+4i\right)kz+\left(24+10i\right)}+\left(\frac{9}{10}+\frac{3}{10}i\right)
Baham ko'rish
Klipbordga nusxa olish
kz=\left(2+i\right)m^{2}-3\left(i+1\right)m-\left(2-2i\right)
2-2i hosil qilish uchun 2 va 1-i ni ko'paytirish.
kz=\left(2+i\right)m^{2}+\left(-3i-3\right)m-\left(2-2i\right)
-3 ga i+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
kz=\left(2+i\right)m^{2}+\left(-3-3i\right)m-\left(2-2i\right)
-3i-3 ga m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
kz=\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)
-2+2i hosil qilish uchun -1 va 2-2i ni ko'paytirish.
zk=\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)
Tenglama standart shaklda.
\frac{zk}{z}=\frac{\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)}{z}
Ikki tarafini z ga bo‘ling.
k=\frac{\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)}{z}
z ga bo'lish z ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}