Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+2x-13=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-2±\sqrt{2^{2}-4\left(-13\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{4-4\left(-13\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+52}}{2}
-4 ni -13 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{56}}{2}
4 ni 52 ga qo'shish.
x=\frac{-2±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-2}{2}
x=\frac{-2±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-1
-2+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-2}{2}
x=\frac{-2±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-1
-2-2\sqrt{14} ni 2 ga bo'lish.
x^{2}+2x-13=\left(x-\left(\sqrt{14}-1\right)\right)\left(x-\left(-\sqrt{14}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1+\sqrt{14} ga va x_{2} uchun -1-\sqrt{14} ga bo‘ling.