Omil
\left(k-7\right)\left(k+5\right)
Baholash
\left(k-7\right)\left(k+5\right)
Viktorina
Polynomial
k ^ { 2 } - 2 k - 35
Baham ko'rish
Klipbordga nusxa olish
a+b=-2 ab=1\left(-35\right)=-35
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda k^{2}+ak+bk-35 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-35 5,-7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -35-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-35=-34 5-7=-2
Har bir juftlik yigʻindisini hisoblang.
a=-7 b=5
Yechim – -2 yigʻindisini beruvchi juftlik.
\left(k^{2}-7k\right)+\left(5k-35\right)
k^{2}-2k-35 ni \left(k^{2}-7k\right)+\left(5k-35\right) sifatida qaytadan yozish.
k\left(k-7\right)+5\left(k-7\right)
Birinchi guruhda k ni va ikkinchi guruhda 5 ni faktordan chiqaring.
\left(k-7\right)\left(k+5\right)
Distributiv funktsiyasidan foydalangan holda k-7 umumiy terminini chiqaring.
k^{2}-2k-35=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
k=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-35\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
k=\frac{-\left(-2\right)±\sqrt{4-4\left(-35\right)}}{2}
-2 kvadratini chiqarish.
k=\frac{-\left(-2\right)±\sqrt{4+140}}{2}
-4 ni -35 marotabaga ko'paytirish.
k=\frac{-\left(-2\right)±\sqrt{144}}{2}
4 ni 140 ga qo'shish.
k=\frac{-\left(-2\right)±12}{2}
144 ning kvadrat ildizini chiqarish.
k=\frac{2±12}{2}
-2 ning teskarisi 2 ga teng.
k=\frac{14}{2}
k=\frac{2±12}{2} tenglamasini yeching, bunda ± musbat. 2 ni 12 ga qo'shish.
k=7
14 ni 2 ga bo'lish.
k=-\frac{10}{2}
k=\frac{2±12}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 12 ni ayirish.
k=-5
-10 ni 2 ga bo'lish.
k^{2}-2k-35=\left(k-7\right)\left(k-\left(-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 7 ga va x_{2} uchun -5 ga bo‘ling.
k^{2}-2k-35=\left(k-7\right)\left(k+5\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}