c uchun yechish
\left\{\begin{matrix}\\c=0\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&\psi _{1}=0\text{ or }m=0\end{matrix}\right,
m uchun yechish
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&\psi _{1}=0\text{ or }c=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
c^{2}=\frac{0}{m\psi _{1}}
m\psi _{1} ga bo'lish m\psi _{1} ga ko'paytirishni bekor qiladi.
c^{2}=0
0 ni m\psi _{1} ga bo'lish.
c=0 c=0
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
c=0
Tenglama yechildi. Yechimlar bir xil.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
mc^{2}\psi _{1}-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}=0
Ikkala tarafdan iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t} ni ayirish.
-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}+m\psi _{1}c^{2}=0
Shartlarni qayta saralash.
m\psi _{1}c^{2}=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}}}{2m\psi _{1}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} m\psi _{1} ni a, 0 ni b va 0 ni c bilan almashtiring.
c=\frac{0±0}{2m\psi _{1}}
0^{2} ning kvadrat ildizini chiqarish.
c=\frac{0}{2m\psi _{1}}
2 ni m\psi _{1} marotabaga ko'paytirish.
c=0
0 ni 2m\psi _{1} ga bo'lish.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\psi _{1}c^{2}m=0
Tenglama standart shaklda.
m=0
0 ni c^{2}\psi _{1} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}