Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(-x-2\right)
x omili.
-x^{2}-2x=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±2}{2\left(-1\right)}
\left(-2\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{2±2}{2\left(-1\right)}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4}{-2}
x=\frac{2±2}{-2} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga qo'shish.
x=-2
4 ni -2 ga bo'lish.
x=\frac{0}{-2}
x=\frac{2±2}{-2} tenglamasini yeching, bunda ± manfiy. 2 dan 2 ni ayirish.
x=0
0 ni -2 ga bo'lish.
-x^{2}-2x=-\left(x-\left(-2\right)\right)x
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -2 ga va x_{2} uchun 0 ga bo‘ling.
-x^{2}-2x=-\left(x+2\right)x
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.