Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(27\left(u^{2}\right)^{3}+135\left(u^{2}\right)^{2}+225u^{2}+125\right)\left(3u-1\right)^{2}
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremasini \left(3u^{2}+5\right)^{3} kengaytirilishi uchun ishlating.
\left(27u^{6}+135\left(u^{2}\right)^{2}+225u^{2}+125\right)\left(3u-1\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 3 ni ko‘paytirib, 6 ni oling.
\left(27u^{6}+135u^{4}+225u^{2}+125\right)\left(3u-1\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\left(27u^{6}+135u^{4}+225u^{2}+125\right)\left(9u^{2}-6u+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3u-1\right)^{2} kengaytirilishi uchun ishlating.
243u^{8}-162u^{7}+1242u^{6}-810u^{5}+2160u^{4}-1350u^{3}+1350u^{2}-750u+125
27u^{6}+135u^{4}+225u^{2}+125 ga 9u^{2}-6u+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\left(27\left(u^{2}\right)^{3}+135\left(u^{2}\right)^{2}+225u^{2}+125\right)\left(3u-1\right)^{2}
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremasini \left(3u^{2}+5\right)^{3} kengaytirilishi uchun ishlating.
\left(27u^{6}+135\left(u^{2}\right)^{2}+225u^{2}+125\right)\left(3u-1\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 3 ni ko‘paytirib, 6 ni oling.
\left(27u^{6}+135u^{4}+225u^{2}+125\right)\left(3u-1\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\left(27u^{6}+135u^{4}+225u^{2}+125\right)\left(9u^{2}-6u+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3u-1\right)^{2} kengaytirilishi uchun ishlating.
243u^{8}-162u^{7}+1242u^{6}-810u^{5}+2160u^{4}-1350u^{3}+1350u^{2}-750u+125
27u^{6}+135u^{4}+225u^{2}+125 ga 9u^{2}-6u+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.