Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-49t^{2}+307t+115=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-307±\sqrt{307^{2}-4\left(-49\right)\times 115}}{2\left(-49\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-307±\sqrt{94249-4\left(-49\right)\times 115}}{2\left(-49\right)}
307 kvadratini chiqarish.
t=\frac{-307±\sqrt{94249+196\times 115}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
t=\frac{-307±\sqrt{94249+22540}}{2\left(-49\right)}
196 ni 115 marotabaga ko'paytirish.
t=\frac{-307±\sqrt{116789}}{2\left(-49\right)}
94249 ni 22540 ga qo'shish.
t=\frac{-307±\sqrt{116789}}{-98}
2 ni -49 marotabaga ko'paytirish.
t=\frac{\sqrt{116789}-307}{-98}
t=\frac{-307±\sqrt{116789}}{-98} tenglamasini yeching, bunda ± musbat. -307 ni \sqrt{116789} ga qo'shish.
t=\frac{307-\sqrt{116789}}{98}
-307+\sqrt{116789} ni -98 ga bo'lish.
t=\frac{-\sqrt{116789}-307}{-98}
t=\frac{-307±\sqrt{116789}}{-98} tenglamasini yeching, bunda ± manfiy. -307 dan \sqrt{116789} ni ayirish.
t=\frac{\sqrt{116789}+307}{98}
-307-\sqrt{116789} ni -98 ga bo'lish.
-49t^{2}+307t+115=-49\left(t-\frac{307-\sqrt{116789}}{98}\right)\left(t-\frac{\sqrt{116789}+307}{98}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{307-\sqrt{116789}}{98} ga va x_{2} uchun \frac{307+\sqrt{116789}}{98} ga bo‘ling.