Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-16t^{2}+96t+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-96±\sqrt{96^{2}-4\left(-16\right)\times 2}}{2\left(-16\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-96±\sqrt{9216-4\left(-16\right)\times 2}}{2\left(-16\right)}
96 kvadratini chiqarish.
t=\frac{-96±\sqrt{9216+64\times 2}}{2\left(-16\right)}
-4 ni -16 marotabaga ko'paytirish.
t=\frac{-96±\sqrt{9216+128}}{2\left(-16\right)}
64 ni 2 marotabaga ko'paytirish.
t=\frac{-96±\sqrt{9344}}{2\left(-16\right)}
9216 ni 128 ga qo'shish.
t=\frac{-96±8\sqrt{146}}{2\left(-16\right)}
9344 ning kvadrat ildizini chiqarish.
t=\frac{-96±8\sqrt{146}}{-32}
2 ni -16 marotabaga ko'paytirish.
t=\frac{8\sqrt{146}-96}{-32}
t=\frac{-96±8\sqrt{146}}{-32} tenglamasini yeching, bunda ± musbat. -96 ni 8\sqrt{146} ga qo'shish.
t=-\frac{\sqrt{146}}{4}+3
-96+8\sqrt{146} ni -32 ga bo'lish.
t=\frac{-8\sqrt{146}-96}{-32}
t=\frac{-96±8\sqrt{146}}{-32} tenglamasini yeching, bunda ± manfiy. -96 dan 8\sqrt{146} ni ayirish.
t=\frac{\sqrt{146}}{4}+3
-96-8\sqrt{146} ni -32 ga bo'lish.
-16t^{2}+96t+2=-16\left(t-\left(-\frac{\sqrt{146}}{4}+3\right)\right)\left(t-\left(\frac{\sqrt{146}}{4}+3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 3-\frac{\sqrt{146}}{4} ga va x_{2} uchun 3+\frac{\sqrt{146}}{4} ga bo‘ling.