h uchun yechish
h=-7
h=5
Baham ko'rish
Klipbordga nusxa olish
h^{2}+2h-35=0
Ikkala tarafdan 35 ni ayirish.
a+b=2 ab=-35
Bu tenglamani yechish uchun h^{2}+\left(a+b\right)h+ab=\left(h+a\right)\left(h+b\right) formulasi yordamida h^{2}+2h-35 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,35 -5,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -35-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+35=34 -5+7=2
Har bir juftlik yigʻindisini hisoblang.
a=-5 b=7
Yechim – 2 yigʻindisini beruvchi juftlik.
\left(h-5\right)\left(h+7\right)
Faktorlangan \left(h+a\right)\left(h+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
h=5 h=-7
Tenglamani yechish uchun h-5=0 va h+7=0 ni yeching.
h^{2}+2h-35=0
Ikkala tarafdan 35 ni ayirish.
a+b=2 ab=1\left(-35\right)=-35
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon h^{2}+ah+bh-35 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,35 -5,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -35-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+35=34 -5+7=2
Har bir juftlik yigʻindisini hisoblang.
a=-5 b=7
Yechim – 2 yigʻindisini beruvchi juftlik.
\left(h^{2}-5h\right)+\left(7h-35\right)
h^{2}+2h-35 ni \left(h^{2}-5h\right)+\left(7h-35\right) sifatida qaytadan yozish.
h\left(h-5\right)+7\left(h-5\right)
Birinchi guruhda h ni va ikkinchi guruhda 7 ni faktordan chiqaring.
\left(h-5\right)\left(h+7\right)
Distributiv funktsiyasidan foydalangan holda h-5 umumiy terminini chiqaring.
h=5 h=-7
Tenglamani yechish uchun h-5=0 va h+7=0 ni yeching.
h^{2}+2h=35
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
h^{2}+2h-35=35-35
Tenglamaning ikkala tarafidan 35 ni ayirish.
h^{2}+2h-35=0
O‘zidan 35 ayirilsa 0 qoladi.
h=\frac{-2±\sqrt{2^{2}-4\left(-35\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -35 ni c bilan almashtiring.
h=\frac{-2±\sqrt{4-4\left(-35\right)}}{2}
2 kvadratini chiqarish.
h=\frac{-2±\sqrt{4+140}}{2}
-4 ni -35 marotabaga ko'paytirish.
h=\frac{-2±\sqrt{144}}{2}
4 ni 140 ga qo'shish.
h=\frac{-2±12}{2}
144 ning kvadrat ildizini chiqarish.
h=\frac{10}{2}
h=\frac{-2±12}{2} tenglamasini yeching, bunda ± musbat. -2 ni 12 ga qo'shish.
h=5
10 ni 2 ga bo'lish.
h=-\frac{14}{2}
h=\frac{-2±12}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 12 ni ayirish.
h=-7
-14 ni 2 ga bo'lish.
h=5 h=-7
Tenglama yechildi.
h^{2}+2h=35
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
h^{2}+2h+1^{2}=35+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
h^{2}+2h+1=35+1
1 kvadratini chiqarish.
h^{2}+2h+1=36
35 ni 1 ga qo'shish.
\left(h+1\right)^{2}=36
h^{2}+2h+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(h+1\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
h+1=6 h+1=-6
Qisqartirish.
h=5 h=-7
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}