g uchun yechish (complex solution)
\left\{\begin{matrix}g=\frac{1}{m}\text{, }&m\neq 0\\g\in \mathrm{C}\text{, }&h=0\end{matrix}\right,
h uchun yechish (complex solution)
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{C}\text{, }&m=\frac{1}{g}\text{ and }g\neq 0\end{matrix}\right,
g uchun yechish
\left\{\begin{matrix}g=\frac{1}{m}\text{, }&m\neq 0\\g\in \mathrm{R}\text{, }&h=0\end{matrix}\right,
h uchun yechish
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&m=\frac{1}{g}\text{ and }g\neq 0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
mgh=h
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
hmg=h
Tenglama standart shaklda.
\frac{hmg}{hm}=\frac{h}{hm}
Ikki tarafini mh ga bo‘ling.
g=\frac{h}{hm}
mh ga bo'lish mh ga ko'paytirishni bekor qiladi.
g=\frac{1}{m}
h ni mh ga bo'lish.
h-mgh=0
Ikkala tarafdan mgh ni ayirish.
-ghm+h=0
Shartlarni qayta saralash.
\left(-gm+1\right)h=0
h'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(1-gm\right)h=0
Tenglama standart shaklda.
h=0
0 ni 1-mg ga bo'lish.
mgh=h
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
hmg=h
Tenglama standart shaklda.
\frac{hmg}{hm}=\frac{h}{hm}
Ikki tarafini mh ga bo‘ling.
g=\frac{h}{hm}
mh ga bo'lish mh ga ko'paytirishni bekor qiladi.
g=\frac{1}{m}
h ni mh ga bo'lish.
h-mgh=0
Ikkala tarafdan mgh ni ayirish.
-ghm+h=0
Shartlarni qayta saralash.
\left(-gm+1\right)h=0
h'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(1-gm\right)h=0
Tenglama standart shaklda.
h=0
0 ni 1-mg ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}