Baholash
\frac{x\left(x^{2}+6\right)}{\left(x-5\right)\left(x+6\right)}
Kengaytirish
\frac{x^{3}+6x}{\left(x-5\right)\left(x+6\right)}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(x^{3}+6x\right)\left(x^{2}+2x-48\right)}{\left(x^{2}-36\right)\left(x^{2}+3x-40\right)}
\frac{x^{3}+6x}{x^{2}-36} ni \frac{x^{2}+3x-40}{x^{2}+2x-48} ga bo'lish \frac{x^{3}+6x}{x^{2}-36} ga k'paytirish \frac{x^{2}+3x-40}{x^{2}+2x-48} ga qaytarish.
\frac{x\left(x-6\right)\left(x+8\right)\left(x^{2}+6\right)}{\left(x-6\right)\left(x-5\right)\left(x+6\right)\left(x+8\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{x\left(x^{2}+6\right)}{\left(x-5\right)\left(x+6\right)}
Surat va maxrajdagi ikkala \left(x-6\right)\left(x+8\right) ni qisqartiring.
\frac{x^{3}+6x}{x^{2}+x-30}
Ifodani kengaytiring.
\frac{\left(x^{3}+6x\right)\left(x^{2}+2x-48\right)}{\left(x^{2}-36\right)\left(x^{2}+3x-40\right)}
\frac{x^{3}+6x}{x^{2}-36} ni \frac{x^{2}+3x-40}{x^{2}+2x-48} ga bo'lish \frac{x^{3}+6x}{x^{2}-36} ga k'paytirish \frac{x^{2}+3x-40}{x^{2}+2x-48} ga qaytarish.
\frac{x\left(x-6\right)\left(x+8\right)\left(x^{2}+6\right)}{\left(x-6\right)\left(x-5\right)\left(x+6\right)\left(x+8\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{x\left(x^{2}+6\right)}{\left(x-5\right)\left(x+6\right)}
Surat va maxrajdagi ikkala \left(x-6\right)\left(x+8\right) ni qisqartiring.
\frac{x^{3}+6x}{x^{2}+x-30}
Ifodani kengaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}