V uchun yechish
V=\frac{28900000g}{667}
g uchun yechish
g=\frac{667V}{28900000}
Baham ko'rish
Klipbordga nusxa olish
g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
-7 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000000} ni qiymatni oling.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
\frac{1}{5000000} hosil qilish uchun 2 va \frac{1}{10000000} ni ko'paytirish.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
1334000 hosil qilish uchun 2000 va 667 ni ko'paytirish.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
-11 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000000000} ni qiymatni oling.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
\frac{667}{50000000} hosil qilish uchun 1334000 va \frac{1}{100000000000} ni ko'paytirish.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
2 daraja ko‘rsatkichini 1700 ga hisoblang va 2890000 ni qiymatni oling.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
\frac{667}{144500000000000}V ni olish uchun \frac{667}{50000000}V ni 2890000 ga bo‘ling.
\frac{667}{144500000000000}V=g\times \frac{1}{5000000}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{667}{144500000000000}V=\frac{g}{5000000}
Tenglama standart shaklda.
\frac{\frac{667}{144500000000000}V}{\frac{667}{144500000000000}}=\frac{g}{\frac{667}{144500000000000}\times 5000000}
Tenglamaning ikki tarafini \frac{667}{144500000000000} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
V=\frac{g}{\frac{667}{144500000000000}\times 5000000}
\frac{667}{144500000000000} ga bo'lish \frac{667}{144500000000000} ga ko'paytirishni bekor qiladi.
V=\frac{28900000g}{667}
\frac{g}{5000000} ni \frac{667}{144500000000000} ga bo'lish \frac{g}{5000000} ga k'paytirish \frac{667}{144500000000000} ga qaytarish.
g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
-7 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000000} ni qiymatni oling.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
\frac{1}{5000000} hosil qilish uchun 2 va \frac{1}{10000000} ni ko'paytirish.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
1334000 hosil qilish uchun 2000 va 667 ni ko'paytirish.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
-11 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000000000} ni qiymatni oling.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
\frac{667}{50000000} hosil qilish uchun 1334000 va \frac{1}{100000000000} ni ko'paytirish.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
2 daraja ko‘rsatkichini 1700 ga hisoblang va 2890000 ni qiymatni oling.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
\frac{667}{144500000000000}V ni olish uchun \frac{667}{50000000}V ni 2890000 ga bo‘ling.
\frac{1}{5000000}g=\frac{667V}{144500000000000}
Tenglama standart shaklda.
\frac{\frac{1}{5000000}g}{\frac{1}{5000000}}=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
Ikkala tarafini 5000000 ga ko‘paytiring.
g=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
\frac{1}{5000000} ga bo'lish \frac{1}{5000000} ga ko'paytirishni bekor qiladi.
g=\frac{667V}{28900000}
\frac{667V}{144500000000000} ni \frac{1}{5000000} ga bo'lish \frac{667V}{144500000000000} ga k'paytirish \frac{1}{5000000} ga qaytarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}