Asosiy tarkibga oʻtish
g uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

g\left(g+7\right)=0
g omili.
g=0 g=-7
Tenglamani yechish uchun g=0 va g+7=0 ni yeching.
g^{2}+7g=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
g=\frac{-7±\sqrt{7^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 7 ni b va 0 ni c bilan almashtiring.
g=\frac{-7±7}{2}
7^{2} ning kvadrat ildizini chiqarish.
g=\frac{0}{2}
g=\frac{-7±7}{2} tenglamasini yeching, bunda ± musbat. -7 ni 7 ga qo'shish.
g=0
0 ni 2 ga bo'lish.
g=-\frac{14}{2}
g=\frac{-7±7}{2} tenglamasini yeching, bunda ± manfiy. -7 dan 7 ni ayirish.
g=-7
-14 ni 2 ga bo'lish.
g=0 g=-7
Tenglama yechildi.
g^{2}+7g=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
g^{2}+7g+\left(\frac{7}{2}\right)^{2}=\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
g^{2}+7g+\frac{49}{4}=\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
\left(g+\frac{7}{2}\right)^{2}=\frac{49}{4}
g^{2}+7g+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(g+\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
g+\frac{7}{2}=\frac{7}{2} g+\frac{7}{2}=-\frac{7}{2}
Qisqartirish.
g=0 g=-7
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.