Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-6x-19=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-19\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-19\right)}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+76}}{2}
-4 ni -19 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{112}}{2}
36 ni 76 ga qo'shish.
x=\frac{-\left(-6\right)±4\sqrt{7}}{2}
112 ning kvadrat ildizini chiqarish.
x=\frac{6±4\sqrt{7}}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{4\sqrt{7}+6}{2}
x=\frac{6±4\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 4\sqrt{7} ga qo'shish.
x=2\sqrt{7}+3
6+4\sqrt{7} ni 2 ga bo'lish.
x=\frac{6-4\sqrt{7}}{2}
x=\frac{6±4\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 4\sqrt{7} ni ayirish.
x=3-2\sqrt{7}
6-4\sqrt{7} ni 2 ga bo'lish.
x^{2}-6x-19=\left(x-\left(2\sqrt{7}+3\right)\right)\left(x-\left(3-2\sqrt{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 3+2\sqrt{7} ga va x_{2} uchun 3-2\sqrt{7} ga bo‘ling.