Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-14x+44=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 44}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 44}}{2}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-176}}{2}
-4 ni 44 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{20}}{2}
196 ni -176 ga qo'shish.
x=\frac{-\left(-14\right)±2\sqrt{5}}{2}
20 ning kvadrat ildizini chiqarish.
x=\frac{14±2\sqrt{5}}{2}
-14 ning teskarisi 14 ga teng.
x=\frac{2\sqrt{5}+14}{2}
x=\frac{14±2\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. 14 ni 2\sqrt{5} ga qo'shish.
x=\sqrt{5}+7
14+2\sqrt{5} ni 2 ga bo'lish.
x=\frac{14-2\sqrt{5}}{2}
x=\frac{14±2\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. 14 dan 2\sqrt{5} ni ayirish.
x=7-\sqrt{5}
14-2\sqrt{5} ni 2 ga bo'lish.
x^{2}-14x+44=\left(x-\left(\sqrt{5}+7\right)\right)\left(x-\left(7-\sqrt{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 7+\sqrt{5} ga va x_{2} uchun 7-\sqrt{5} ga bo‘ling.