g uchun yechish
\left\{\begin{matrix}g=-\frac{4x+5}{3xy}\text{, }&y\neq 0\text{ and }x\neq 0\\g\in \mathrm{R}\text{, }&x=-\frac{5}{4}\text{ and }y=0\end{matrix}\right,
x uchun yechish
x=-\frac{5}{3gy+4}
g=0\text{ or }y\neq -\frac{4}{3g}
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x+6ygx=x^{2}-3x-10-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
5x+6ygx=-3x-10
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
6ygx=-3x-10-5x
Ikkala tarafdan 5x ni ayirish.
6ygx=-8x-10
-8x ni olish uchun -3x va -5x ni birlashtirish.
6xyg=-8x-10
Tenglama standart shaklda.
\frac{6xyg}{6xy}=\frac{-8x-10}{6xy}
Ikki tarafini 6yx ga bo‘ling.
g=\frac{-8x-10}{6xy}
6yx ga bo'lish 6yx ga ko'paytirishni bekor qiladi.
g=-\frac{4x+5}{3xy}
-8x-10 ni 6yx ga bo'lish.
x^{2}+5x+6ygx-x^{2}=-3x-10
Ikkala tarafdan x^{2} ni ayirish.
5x+6ygx=-3x-10
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
5x+6ygx+3x=-10
3x ni ikki tarafga qo’shing.
8x+6ygx=-10
8x ni olish uchun 5x va 3x ni birlashtirish.
\left(8+6yg\right)x=-10
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(6gy+8\right)x=-10
Tenglama standart shaklda.
\frac{\left(6gy+8\right)x}{6gy+8}=-\frac{10}{6gy+8}
Ikki tarafini 6gy+8 ga bo‘ling.
x=-\frac{10}{6gy+8}
6gy+8 ga bo'lish 6gy+8 ga ko'paytirishni bekor qiladi.
x=-\frac{5}{3gy+4}
-10 ni 6gy+8 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}