Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-17x+3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 4\times 3}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 4\times 3}}{2\times 4}
-17 kvadratini chiqarish.
x=\frac{-\left(-17\right)±\sqrt{289-16\times 3}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-17\right)±\sqrt{289-48}}{2\times 4}
-16 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-17\right)±\sqrt{241}}{2\times 4}
289 ni -48 ga qo'shish.
x=\frac{17±\sqrt{241}}{2\times 4}
-17 ning teskarisi 17 ga teng.
x=\frac{17±\sqrt{241}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\sqrt{241}+17}{8}
x=\frac{17±\sqrt{241}}{8} tenglamasini yeching, bunda ± musbat. 17 ni \sqrt{241} ga qo'shish.
x=\frac{17-\sqrt{241}}{8}
x=\frac{17±\sqrt{241}}{8} tenglamasini yeching, bunda ± manfiy. 17 dan \sqrt{241} ni ayirish.
4x^{2}-17x+3=4\left(x-\frac{\sqrt{241}+17}{8}\right)\left(x-\frac{17-\sqrt{241}}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{17+\sqrt{241}}{8} ga va x_{2} uchun \frac{17-\sqrt{241}}{8} ga bo‘ling.