Baholash
\frac{16x^{2}-20x+1}{4x-5}
x ga nisbatan hosilani topish
\frac{32\left(x-1\right)\left(2x-3\right)}{\left(4x-5\right)^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{4x\left(4x-5\right)}{4x-5}+\frac{1}{4x-5}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 4x ni \frac{4x-5}{4x-5} marotabaga ko'paytirish.
\frac{4x\left(4x-5\right)+1}{4x-5}
\frac{4x\left(4x-5\right)}{4x-5} va \frac{1}{4x-5} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{16x^{2}-20x+1}{4x-5}
4x\left(4x-5\right)+1 ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x\left(4x-5\right)}{4x-5}+\frac{1}{4x-5})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 4x ni \frac{4x-5}{4x-5} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x\left(4x-5\right)+1}{4x-5})
\frac{4x\left(4x-5\right)}{4x-5} va \frac{1}{4x-5} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{16x^{2}-20x+1}{4x-5})
4x\left(4x-5\right)+1 ichidagi ko‘paytirishlarni bajaring.
\frac{\left(4x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(16x^{2}-20x^{1}+1)-\left(16x^{2}-20x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(4x^{1}-5)}{\left(4x^{1}-5\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(4x^{1}-5\right)\left(2\times 16x^{2-1}-20x^{1-1}\right)-\left(16x^{2}-20x^{1}+1\right)\times 4x^{1-1}}{\left(4x^{1}-5\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(4x^{1}-5\right)\left(32x^{1}-20x^{0}\right)-\left(16x^{2}-20x^{1}+1\right)\times 4x^{0}}{\left(4x^{1}-5\right)^{2}}
Qisqartirish.
\frac{4x^{1}\times 32x^{1}+4x^{1}\left(-20\right)x^{0}-5\times 32x^{1}-5\left(-20\right)x^{0}-\left(16x^{2}-20x^{1}+1\right)\times 4x^{0}}{\left(4x^{1}-5\right)^{2}}
4x^{1}-5 ni 32x^{1}-20x^{0} marotabaga ko'paytirish.
\frac{4x^{1}\times 32x^{1}+4x^{1}\left(-20\right)x^{0}-5\times 32x^{1}-5\left(-20\right)x^{0}-\left(16x^{2}\times 4x^{0}-20x^{1}\times 4x^{0}+4x^{0}\right)}{\left(4x^{1}-5\right)^{2}}
16x^{2}-20x^{1}+1 ni 4x^{0} marotabaga ko'paytirish.
\frac{4\times 32x^{1+1}+4\left(-20\right)x^{1}-5\times 32x^{1}-5\left(-20\right)x^{0}-\left(16\times 4x^{2}-20\times 4x^{1}+4x^{0}\right)}{\left(4x^{1}-5\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{128x^{2}-80x^{1}-160x^{1}+100x^{0}-\left(64x^{2}-80x^{1}+4x^{0}\right)}{\left(4x^{1}-5\right)^{2}}
Qisqartirish.
\frac{64x^{2}-160x^{1}+96x^{0}}{\left(4x^{1}-5\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{64x^{2}-160x+96x^{0}}{\left(4x-5\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{64x^{2}-160x+96\times 1}{\left(4x-5\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{64x^{2}-160x+96}{\left(4x-5\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}