Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-24x+12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 3\times 12}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 3\times 12}}{2\times 3}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576-12\times 12}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{576-144}}{2\times 3}
-12 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{432}}{2\times 3}
576 ni -144 ga qo'shish.
x=\frac{-\left(-24\right)±12\sqrt{3}}{2\times 3}
432 ning kvadrat ildizini chiqarish.
x=\frac{24±12\sqrt{3}}{2\times 3}
-24 ning teskarisi 24 ga teng.
x=\frac{24±12\sqrt{3}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{12\sqrt{3}+24}{6}
x=\frac{24±12\sqrt{3}}{6} tenglamasini yeching, bunda ± musbat. 24 ni 12\sqrt{3} ga qo'shish.
x=2\sqrt{3}+4
24+12\sqrt{3} ni 6 ga bo'lish.
x=\frac{24-12\sqrt{3}}{6}
x=\frac{24±12\sqrt{3}}{6} tenglamasini yeching, bunda ± manfiy. 24 dan 12\sqrt{3} ni ayirish.
x=4-2\sqrt{3}
24-12\sqrt{3} ni 6 ga bo'lish.
3x^{2}-24x+12=3\left(x-\left(2\sqrt{3}+4\right)\right)\left(x-\left(4-2\sqrt{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 4+2\sqrt{3} ga va x_{2} uchun 4-2\sqrt{3} ga bo‘ling.