Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-15x+9=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\times 9}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\times 9}}{2\times 3}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225-12\times 9}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{225-108}}{2\times 3}
-12 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{117}}{2\times 3}
225 ni -108 ga qo'shish.
x=\frac{-\left(-15\right)±3\sqrt{13}}{2\times 3}
117 ning kvadrat ildizini chiqarish.
x=\frac{15±3\sqrt{13}}{2\times 3}
-15 ning teskarisi 15 ga teng.
x=\frac{15±3\sqrt{13}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{3\sqrt{13}+15}{6}
x=\frac{15±3\sqrt{13}}{6} tenglamasini yeching, bunda ± musbat. 15 ni 3\sqrt{13} ga qo'shish.
x=\frac{\sqrt{13}+5}{2}
15+3\sqrt{13} ni 6 ga bo'lish.
x=\frac{15-3\sqrt{13}}{6}
x=\frac{15±3\sqrt{13}}{6} tenglamasini yeching, bunda ± manfiy. 15 dan 3\sqrt{13} ni ayirish.
x=\frac{5-\sqrt{13}}{2}
15-3\sqrt{13} ni 6 ga bo'lish.
3x^{2}-15x+9=3\left(x-\frac{\sqrt{13}+5}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5+\sqrt{13}}{2} ga va x_{2} uchun \frac{5-\sqrt{13}}{2} ga bo‘ling.