Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+7x-8=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-8\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{49-4\times 3\left(-8\right)}}{2\times 3}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-12\left(-8\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+96}}{2\times 3}
-12 ni -8 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{145}}{2\times 3}
49 ni 96 ga qo'shish.
x=\frac{-7±\sqrt{145}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{145}-7}{6}
x=\frac{-7±\sqrt{145}}{6} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{145} ga qo'shish.
x=\frac{-\sqrt{145}-7}{6}
x=\frac{-7±\sqrt{145}}{6} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{145} ni ayirish.
3x^{2}+7x-8=3\left(x-\frac{\sqrt{145}-7}{6}\right)\left(x-\frac{-\sqrt{145}-7}{6}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-7+\sqrt{145}}{6} ga va x_{2} uchun \frac{-7-\sqrt{145}}{6} ga bo‘ling.