Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+6x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-2\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{36-4\times 3\left(-2\right)}}{2\times 3}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-12\left(-2\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+24}}{2\times 3}
-12 ni -2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{60}}{2\times 3}
36 ni 24 ga qo'shish.
x=\frac{-6±2\sqrt{15}}{2\times 3}
60 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{15}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{15}-6}{6}
x=\frac{-6±2\sqrt{15}}{6} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{15} ga qo'shish.
x=\frac{\sqrt{15}}{3}-1
-6+2\sqrt{15} ni 6 ga bo'lish.
x=\frac{-2\sqrt{15}-6}{6}
x=\frac{-6±2\sqrt{15}}{6} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{15} ni ayirish.
x=-\frac{\sqrt{15}}{3}-1
-6-2\sqrt{15} ni 6 ga bo'lish.
3x^{2}+6x-2=3\left(x-\left(\frac{\sqrt{15}}{3}-1\right)\right)\left(x-\left(-\frac{\sqrt{15}}{3}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1+\frac{\sqrt{15}}{3} ga va x_{2} uchun -1-\frac{\sqrt{15}}{3} ga bo‘ling.