Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+3x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-3±\sqrt{3^{2}-4\times 3\left(-2\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{9-4\times 3\left(-2\right)}}{2\times 3}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-12\left(-2\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+24}}{2\times 3}
-12 ni -2 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{33}}{2\times 3}
9 ni 24 ga qo'shish.
x=\frac{-3±\sqrt{33}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{33}-3}{6}
x=\frac{-3±\sqrt{33}}{6} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{33} ga qo'shish.
x=\frac{\sqrt{33}}{6}-\frac{1}{2}
-3+\sqrt{33} ni 6 ga bo'lish.
x=\frac{-\sqrt{33}-3}{6}
x=\frac{-3±\sqrt{33}}{6} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{33} ni ayirish.
x=-\frac{\sqrt{33}}{6}-\frac{1}{2}
-3-\sqrt{33} ni 6 ga bo'lish.
3x^{2}+3x-2=3\left(x-\left(\frac{\sqrt{33}}{6}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{33}}{6}-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{1}{2}+\frac{\sqrt{33}}{6} ga va x_{2} uchun -\frac{1}{2}-\frac{\sqrt{33}}{6} ga bo‘ling.