Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+12x+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-12±\sqrt{12^{2}-4\times 3\times 5}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{144-4\times 3\times 5}}{2\times 3}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-12\times 5}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144-60}}{2\times 3}
-12 ni 5 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{84}}{2\times 3}
144 ni -60 ga qo'shish.
x=\frac{-12±2\sqrt{21}}{2\times 3}
84 ning kvadrat ildizini chiqarish.
x=\frac{-12±2\sqrt{21}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{21}-12}{6}
x=\frac{-12±2\sqrt{21}}{6} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{21} ga qo'shish.
x=\frac{\sqrt{21}}{3}-2
-12+2\sqrt{21} ni 6 ga bo'lish.
x=\frac{-2\sqrt{21}-12}{6}
x=\frac{-12±2\sqrt{21}}{6} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{21} ni ayirish.
x=-\frac{\sqrt{21}}{3}-2
-12-2\sqrt{21} ni 6 ga bo'lish.
3x^{2}+12x+5=3\left(x-\left(\frac{\sqrt{21}}{3}-2\right)\right)\left(x-\left(-\frac{\sqrt{21}}{3}-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -2+\frac{\sqrt{21}}{3} ga va x_{2} uchun -2-\frac{\sqrt{21}}{3} ga bo‘ling.