Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+5x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-5±\sqrt{5^{2}-4\times 2}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{25-4\times 2}}{2\times 2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{17}}{2\times 2}
25 ni -8 ga qo'shish.
x=\frac{-5±\sqrt{17}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{17}-5}{4}
x=\frac{-5±\sqrt{17}}{4} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{17} ga qo'shish.
x=\frac{-\sqrt{17}-5}{4}
x=\frac{-5±\sqrt{17}}{4} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{17} ni ayirish.
2x^{2}+5x+1=2\left(x-\frac{\sqrt{17}-5}{4}\right)\left(x-\frac{-\sqrt{17}-5}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-5+\sqrt{17}}{4} ga va x_{2} uchun \frac{-5-\sqrt{17}}{4} ga bo‘ling.