Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=3 ab=2\left(-5\right)=-10
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 2x^{2}+ax+bx-5 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,10 -2,5
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -10-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+10=9 -2+5=3
Har bir juftlik yigʻindisini hisoblang.
a=-2 b=5
Yechim – 3 yigʻindisini beruvchi juftlik.
\left(2x^{2}-2x\right)+\left(5x-5\right)
2x^{2}+3x-5 ni \left(2x^{2}-2x\right)+\left(5x-5\right) sifatida qaytadan yozish.
2x\left(x-1\right)+5\left(x-1\right)
Birinchi guruhda 2x ni va ikkinchi guruhda 5 ni faktordan chiqaring.
\left(x-1\right)\left(2x+5\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
2x^{2}+3x-5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-8 ni -5 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{49}}{2\times 2}
9 ni 40 ga qo'shish.
x=\frac{-3±7}{2\times 2}
49 ning kvadrat ildizini chiqarish.
x=\frac{-3±7}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4}{4}
x=\frac{-3±7}{4} tenglamasini yeching, bunda ± musbat. -3 ni 7 ga qo'shish.
x=1
4 ni 4 ga bo'lish.
x=-\frac{10}{4}
x=\frac{-3±7}{4} tenglamasini yeching, bunda ± manfiy. -3 dan 7 ni ayirish.
x=-\frac{5}{2}
\frac{-10}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
2x^{2}+3x-5=2\left(x-1\right)\left(x-\left(-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1 ga va x_{2} uchun -\frac{5}{2} ga bo‘ling.
2x^{2}+3x-5=2\left(x-1\right)\left(x+\frac{5}{2}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
2x^{2}+3x-5=2\left(x-1\right)\times \frac{2x+5}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{2} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
2x^{2}+3x-5=\left(x-1\right)\left(2x+5\right)
2 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.