Baholash
\frac{x-1}{x+1}
x ga nisbatan hosilani topish
\frac{2}{\left(x+1\right)^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{x+1}{x+1}-\frac{2}{x+1}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{x+1-2}{x+1}
\frac{x+1}{x+1} va \frac{2}{x+1} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x-1}{x+1}
x+1-2 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{x+1}-\frac{2}{x+1})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-2}{x+1})
\frac{x+1}{x+1} va \frac{2}{x+1} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-1}{x+1})
x+1-2 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)-\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{1}+1\right)x^{1-1}-\left(x^{1}-1\right)x^{1-1}}{\left(x^{1}+1\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{1}+1\right)x^{0}-\left(x^{1}-1\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{1}x^{0}+x^{0}-\left(x^{1}x^{0}-x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{x^{1}+x^{0}-\left(x^{1}-x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{x^{1}+x^{0}-x^{1}-\left(-x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(1-1\right)x^{1}+\left(1-\left(-1\right)\right)x^{0}}{\left(x^{1}+1\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{2x^{0}}{\left(x^{1}+1\right)^{2}}
1 dan 1 ni va 1 dan -1 ni ayiring.
\frac{2x^{0}}{\left(x+1\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{2\times 1}{\left(x+1\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{2}{\left(x+1\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}