Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+6x+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{56}}{2\left(-1\right)}
36 ni 20 ga qo'shish.
x=\frac{-6±2\sqrt{14}}{2\left(-1\right)}
56 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{14}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{14}-6}{-2}
x=\frac{-6±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{14} ga qo'shish.
x=3-\sqrt{14}
-6+2\sqrt{14} ni -2 ga bo'lish.
x=\frac{-2\sqrt{14}-6}{-2}
x=\frac{-6±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{14} ni ayirish.
x=\sqrt{14}+3
-6-2\sqrt{14} ni -2 ga bo'lish.
-x^{2}+6x+5=-\left(x-\left(3-\sqrt{14}\right)\right)\left(x-\left(\sqrt{14}+3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 3-\sqrt{14} ga va x_{2} uchun 3+\sqrt{14} ga bo‘ling.