Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+4x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{16-4\left(-1\right)}}{2\left(-1\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+4}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{20}}{2\left(-1\right)}
16 ni 4 ga qo'shish.
x=\frac{-4±2\sqrt{5}}{2\left(-1\right)}
20 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{5}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{5}-4}{-2}
x=\frac{-4±2\sqrt{5}}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{5} ga qo'shish.
x=2-\sqrt{5}
-4+2\sqrt{5} ni -2 ga bo'lish.
x=\frac{-2\sqrt{5}-4}{-2}
x=\frac{-4±2\sqrt{5}}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{5} ni ayirish.
x=\sqrt{5}+2
-4-2\sqrt{5} ni -2 ga bo'lish.
-x^{2}+4x+1=-\left(x-\left(2-\sqrt{5}\right)\right)\left(x-\left(\sqrt{5}+2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2-\sqrt{5} ga va x_{2} uchun 2+\sqrt{5} ga bo‘ling.