Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4x^{2}+16x+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-16±\sqrt{16^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{256-4\left(-4\right)\times 2}}{2\left(-4\right)}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256+16\times 2}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{256+32}}{2\left(-4\right)}
16 ni 2 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{288}}{2\left(-4\right)}
256 ni 32 ga qo'shish.
x=\frac{-16±12\sqrt{2}}{2\left(-4\right)}
288 ning kvadrat ildizini chiqarish.
x=\frac{-16±12\sqrt{2}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{12\sqrt{2}-16}{-8}
x=\frac{-16±12\sqrt{2}}{-8} tenglamasini yeching, bunda ± musbat. -16 ni 12\sqrt{2} ga qo'shish.
x=-\frac{3\sqrt{2}}{2}+2
-16+12\sqrt{2} ni -8 ga bo'lish.
x=\frac{-12\sqrt{2}-16}{-8}
x=\frac{-16±12\sqrt{2}}{-8} tenglamasini yeching, bunda ± manfiy. -16 dan 12\sqrt{2} ni ayirish.
x=\frac{3\sqrt{2}}{2}+2
-16-12\sqrt{2} ni -8 ga bo'lish.
-4x^{2}+16x+2=-4\left(x-\left(-\frac{3\sqrt{2}}{2}+2\right)\right)\left(x-\left(\frac{3\sqrt{2}}{2}+2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2-\frac{3\sqrt{2}}{2} ga va x_{2} uchun 2+\frac{3\sqrt{2}}{2} ga bo‘ling.