Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}-9x+8=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-3\right)\times 8}}{2\left(-3\right)}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81+12\times 8}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{81+96}}{2\left(-3\right)}
12 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{177}}{2\left(-3\right)}
81 ni 96 ga qo'shish.
x=\frac{9±\sqrt{177}}{2\left(-3\right)}
-9 ning teskarisi 9 ga teng.
x=\frac{9±\sqrt{177}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{\sqrt{177}+9}{-6}
x=\frac{9±\sqrt{177}}{-6} tenglamasini yeching, bunda ± musbat. 9 ni \sqrt{177} ga qo'shish.
x=-\frac{\sqrt{177}}{6}-\frac{3}{2}
9+\sqrt{177} ni -6 ga bo'lish.
x=\frac{9-\sqrt{177}}{-6}
x=\frac{9±\sqrt{177}}{-6} tenglamasini yeching, bunda ± manfiy. 9 dan \sqrt{177} ni ayirish.
x=\frac{\sqrt{177}}{6}-\frac{3}{2}
9-\sqrt{177} ni -6 ga bo'lish.
-3x^{2}-9x+8=-3\left(x-\left(-\frac{\sqrt{177}}{6}-\frac{3}{2}\right)\right)\left(x-\left(\frac{\sqrt{177}}{6}-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{3}{2}-\frac{\sqrt{177}}{6} ga va x_{2} uchun -\frac{3}{2}+\frac{\sqrt{177}}{6} ga bo‘ling.