Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}-10x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)}}{2\left(-2\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)}}{2\left(-2\right)}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100+8}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{108}}{2\left(-2\right)}
100 ni 8 ga qo'shish.
x=\frac{-\left(-10\right)±6\sqrt{3}}{2\left(-2\right)}
108 ning kvadrat ildizini chiqarish.
x=\frac{10±6\sqrt{3}}{2\left(-2\right)}
-10 ning teskarisi 10 ga teng.
x=\frac{10±6\sqrt{3}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{6\sqrt{3}+10}{-4}
x=\frac{10±6\sqrt{3}}{-4} tenglamasini yeching, bunda ± musbat. 10 ni 6\sqrt{3} ga qo'shish.
x=\frac{-3\sqrt{3}-5}{2}
10+6\sqrt{3} ni -4 ga bo'lish.
x=\frac{10-6\sqrt{3}}{-4}
x=\frac{10±6\sqrt{3}}{-4} tenglamasini yeching, bunda ± manfiy. 10 dan 6\sqrt{3} ni ayirish.
x=\frac{3\sqrt{3}-5}{2}
10-6\sqrt{3} ni -4 ga bo'lish.
-2x^{2}-10x+1=-2\left(x-\frac{-3\sqrt{3}-5}{2}\right)\left(x-\frac{3\sqrt{3}-5}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-5-3\sqrt{3}}{2} ga va x_{2} uchun \frac{-5+3\sqrt{3}}{2} ga bo‘ling.