Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}+x+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\times 5}}{2\left(-2\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1-4\left(-2\right)\times 5}}{2\left(-2\right)}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+8\times 5}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+40}}{2\left(-2\right)}
8 ni 5 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{41}}{2\left(-2\right)}
1 ni 40 ga qo'shish.
x=\frac{-1±\sqrt{41}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{\sqrt{41}-1}{-4}
x=\frac{-1±\sqrt{41}}{-4} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{41} ga qo'shish.
x=\frac{1-\sqrt{41}}{4}
-1+\sqrt{41} ni -4 ga bo'lish.
x=\frac{-\sqrt{41}-1}{-4}
x=\frac{-1±\sqrt{41}}{-4} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}+1}{4}
-1-\sqrt{41} ni -4 ga bo'lish.
-2x^{2}+x+5=-2\left(x-\frac{1-\sqrt{41}}{4}\right)\left(x-\frac{\sqrt{41}+1}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1-\sqrt{41}}{4} ga va x_{2} uchun \frac{1+\sqrt{41}}{4} ga bo‘ling.