Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}+6x+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\times 5}}{2\left(-2\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{36-4\left(-2\right)\times 5}}{2\left(-2\right)}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+8\times 5}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+40}}{2\left(-2\right)}
8 ni 5 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{76}}{2\left(-2\right)}
36 ni 40 ga qo'shish.
x=\frac{-6±2\sqrt{19}}{2\left(-2\right)}
76 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{19}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{19}-6}{-4}
x=\frac{-6±2\sqrt{19}}{-4} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{19} ga qo'shish.
x=\frac{3-\sqrt{19}}{2}
-6+2\sqrt{19} ni -4 ga bo'lish.
x=\frac{-2\sqrt{19}-6}{-4}
x=\frac{-6±2\sqrt{19}}{-4} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{19} ni ayirish.
x=\frac{\sqrt{19}+3}{2}
-6-2\sqrt{19} ni -4 ga bo'lish.
-2x^{2}+6x+5=-2\left(x-\frac{3-\sqrt{19}}{2}\right)\left(x-\frac{\sqrt{19}+3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3-\sqrt{19}}{2} ga va x_{2} uchun \frac{3+\sqrt{19}}{2} ga bo‘ling.