Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-16x^{2}+14x+10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-14±\sqrt{14^{2}-4\left(-16\right)\times 10}}{2\left(-16\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-14±\sqrt{196-4\left(-16\right)\times 10}}{2\left(-16\right)}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196+64\times 10}}{2\left(-16\right)}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{196+640}}{2\left(-16\right)}
64 ni 10 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{836}}{2\left(-16\right)}
196 ni 640 ga qo'shish.
x=\frac{-14±2\sqrt{209}}{2\left(-16\right)}
836 ning kvadrat ildizini chiqarish.
x=\frac{-14±2\sqrt{209}}{-32}
2 ni -16 marotabaga ko'paytirish.
x=\frac{2\sqrt{209}-14}{-32}
x=\frac{-14±2\sqrt{209}}{-32} tenglamasini yeching, bunda ± musbat. -14 ni 2\sqrt{209} ga qo'shish.
x=\frac{7-\sqrt{209}}{16}
-14+2\sqrt{209} ni -32 ga bo'lish.
x=\frac{-2\sqrt{209}-14}{-32}
x=\frac{-14±2\sqrt{209}}{-32} tenglamasini yeching, bunda ± manfiy. -14 dan 2\sqrt{209} ni ayirish.
x=\frac{\sqrt{209}+7}{16}
-14-2\sqrt{209} ni -32 ga bo'lish.
-16x^{2}+14x+10=-16\left(x-\frac{7-\sqrt{209}}{16}\right)\left(x-\frac{\sqrt{209}+7}{16}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{7-\sqrt{209}}{16} ga va x_{2} uchun \frac{7+\sqrt{209}}{16} ga bo‘ling.